

 1

The TCIA Plugin and Servlet API

Contents
1 Installing the TCIA Software ... 3

2 The config.xml file .. 3

3 User Accounts... 6

4 The TCIAServlet API .. 7

4.1 Submitting Files to the Import Pipeline ... 7

4.1.1 Listing Files on the Server ... 7

4.1.2 Checking the Space Required for Import .. 7

4.1.3 Submitting Files to the DirectoryImportService ... 8

4.1.4 Submitting Files to the DicomImportService .. 8

4.2 Viewing the Status of the Import Pipeline ... 8

4.3 The Import Manifest .. 8

4.3.1 Listing the Import Manifest as XML .. 8

4.3.2 Listing the Import Manifest as CSV ... 9

4.3.3 Listing the Import Manifest as XLSX ... 9

4.4 Updating the DicomAnonymizer Lookup Table ... 9

4.4.1 Listing the Lookup Table Template Spreadsheet .. 9

4.4.2 Submitting the Lookup Table .. 10

4.5 Viewing the List of Files Ready for Anonymization .. 10

4.6 Initializing the Anonymization Pipeline Counts ... 11

4.7 Submitting Files for Anonymization ... 12

4.8 Pausing the Anonymization Pipeline .. 12

4.9 Restarting a Paused Anonymization Pipeline .. 12

4.10 Viewing the List of Files Ready for Export .. 12

4.11 Exporting Files .. 13

4.12 Getting the Export Status ... 13

4.13 The Export Manifest Database ... 14

4.13.1 Clearing the Export Manifest Database .. 14

4.13.2 Getting the Export Manifest Database Status .. 14

4.13.3 The Local Manifest .. 14

 2

4.13.3.1 Listing the Manifest with PHI as XML .. 14

4.13.3.2 Listing the Manifest with PHI as CSV ... 15

4.13.3.3 Listing the Manifest with PHI as XLSX.. 15

4.13.4 The Export Manifest .. 15

4.13.4.1 Listing the Manifest without PHI as XML .. 15

4.13.4.2 Listing the Manifest without PHI as CSV ... 15

4.13.4.3 Listing the Manifest without PHI as XLSX .. 16

4.13.5 Exporting the Manifest ... 16

4.14 The History Database ... 16

4.14.1 Resetting the History Database .. 16

4.14.2 Listing the History without PHI ... 16

4.14.3 Listing the History with PHI ... 16

4.14.4 Exporting the History .. 16

4.15 Image Functions ... 17

4.15.1 Listing the Elements of a DICOM File .. 17

4.15.2 Getting a JPEG Image from a DICOM File ... 17

4.16 Special Functions .. 17

4.16.1 Getting the List of File System Roots on the Server ... 17

4.16.2 Getting the Available Space on the Server ... 17

4.16.3 Getting the Export Queue Size.. 18

4.16.4 Getting the URL of the Quarantine Manager Servlet ... 18

4.16.5 Getting a Summary of the DicomAnonymizer Quarantine..................................... 18

4.16.6 Shutting Down the Server ... 18

4.17 Testing Functions ... 18

 3

1 Installing the TCIA Software
The best way to install the TCIA software is to run the TCIA-installer.jar program. It runs exactly
like the CTP-installer program and can be used to perform a fresh installation or upgrade an
existing one.

IMPORTANT: The installer never overwrites an existing config.xml file, so when upgrading an
installation to a new version that has a different configuration, delete (or rename) the old
config.xml before running the installer. This will allow the installer to put the new version in
place.

The installer installs:
1. CTP
2. config.xml
3. The TCIAPlugin library
4. The wizard home page
5. The wizard libraries

2 The config.xml file
The config.xml for the TCIA project is:

<Configuration>

 <Server

 maxThreads="20"

 port="9000"/>

 <Plugin

 anonymizerID="CollectionDicomAnonymizer"

 anonymizerInputID="CollectionAnonymizerInput"

 anonymizerStorageID="CollectionAnonymizerStorage"

 class="edu.uams.tcia.TCIAPlugin"

 exportInputID="CollectionExportInput"

 exportManifestLogID="CollectionExportManifestLog"

 exportOutputID="CollectionExportOutput"

 id="Collection"

 importInputID="CollectionImportInput"

 importManifestLogID="CollectionImportManifestLog"

 importStorageID="CollectionImportStorage"

 name="CollectionTCIAPlugin"

 root="Collection/TCIAplugin"/>

 <Plugin

 class="edu.uams.tcia.ExportManifestLogPlugin"

 id="CollectionExportManifestLog"

 name="CollectionExportManifestLog"

 root="Collection/ExportManifestLog"

 tciaPluginID="Collection"/>

 <Plugin

 class="edu.uams.tcia.ImportManifestLogPlugin"

 id="CollectionImportManifestLog"

 name="CollectionImportManifestLog"

 root="Collection/ImportManifestLog"/>

 <Pipeline

 name="CollectionImport"

 root="Collection/import">

 4

 <DirectoryImportService

 class="org.rsna.ctp.stdstages.DirectoryImportService"

 id="CollectionImportInput"

 import="roots/DirectoryImportService/import"

 interval="4000"

 name="DirectoryImportService"

 quarantine="quarantines/DirectoryImportService"

 root="roots/DirectoryImportService"/>

 <DicomImportService

 class="org.rsna.ctp.stdstages.DicomImportService"

 logConnections="no"

 name="DicomImportService"

 port="104"

 quarantine="quarantines/DicomImportService"

 root="roots/DicomImportService"/>

 <ImportManifestLogger

 class="edu.uams.tcia.ImportManifestLogger"

 id="CollectionImportManifestLogger"

 manifestLogID="CollectionImportManifestLog"

 name="ImportManifestLogger"

 root="roots/CollectionImportManifestLogger"/>

 <DirectoryStorageService

 acceptDuplicates="yes"

 class="org.rsna.ctp.stdstages.DirectoryStorageService"

 defaultString=""

 id="CollectionImportStorage"

 logDuplicates="no"

 name="DirectoryStorageService"

 quarantine="quarantines/DirectoryStorageService"

 root="roots/DirectoryStorageService"

 setStandardExtensions="no"

 structure="(0010,0020)-(0010,0010)/(0008,0020)/Series(0020,0011)"

 whitespaceReplacement="_"/>

 </Pipeline>

 <Pipeline

 name="CollectionAnonymization"

 root="Collection/anonymization">

 <DirectoryImportService

 class="org.rsna.ctp.stdstages.DirectoryImportService"

 id="CollectionAnonymizerInput"

 import="roots/DirectoryImportService/import"

 interval="4000"

 name="DirectoryImportService"

 quarantine="quarantines/DirectoryImportService"

 root="roots/DirectoryImportService"/>

 <ObjectCache

 class="org.rsna.ctp.stdstages.ObjectCache"

 id="CollectionObjectCache"

 name="ObjectCache"

 root="roots/ObjectCache"/>

 <DicomAnonymizer

 class="org.rsna.ctp.stdstages.DicomAnonymizer"

 id="CollectionDicomAnonymizer"

 lookupTable="scripts/LookupTable.properties"

 name="DicomAnonymizer"

 quarantine="quarantines/DicomAnonymizer"

 root="roots/DicomAnonymizer"

 5

 script="scripts/TCIADicomAnonymizer.script"/>

 <ExportManifestLogger

 cacheID="CollectionObjectCache"

 class="edu.uams.tcia.ExportManifestLogger"

 id="CollectionExportManifestLogger"

 manifestLogID="CollectionExportManifestLog"

 name="ExportManifestLogger"

 root="roots/CollectionExportManifestLogger"/>

 <DirectoryStorageService

 acceptDuplicates="yes"

 cacheID="CollectionObjectCache"

 class="org.rsna.ctp.stdstages.DirectoryStorageService"

 defaultString=""

 id="CollectionAnonymizerStorage"

 logDuplicates="no"

 name="DirectoryStorageService"

 quarantine="quarantines/DirectoryStorageService"

 root="roots/DirectoryStorageService"

 setStandardExtensions="no"

 structure="(0010,0020)-(0010,0010)/(0008,0020)/Series(0020,0011)"

 whitespaceReplacement="_"/>

 </Pipeline>

 <Pipeline

 name="CollectionExport"

 root="Collection/export">

 <DirectoryImportService

 class="org.rsna.ctp.stdstages.DirectoryImportService"

 id="CollectionExportInput"

 import="roots/DirectoryImportService/import"

 interval="4000"

 name="DirectoryImportService"

 quarantine="quarantines/DirectoryImportService"

 root="roots/DirectoryImportService"/>

 <HttpExportService

 class="org.rsna.ctp.stdstages.HttpExportService"

 id="CollectionExportOutput"

 name="HttpExportService"

 quarantine="quarantines/HttpExportService"

 root="roots/HttpExportService"

 sendDigestHeader="no"

 url="http://127.0.0.1:7777"/>

 </Pipeline>

 <Pipeline

 name="DummyExportReceiver"

 root="Collection/dummy/dicom">

 <HttpImportService

 class="org.rsna.ctp.stdstages.HttpImportService"

 logConnections="no"

 name="HttpImportService"

 port="7777"

 quarantine="quarantines/HttpImportService"

 root="roots/HttpImportService"/>

 </Pipeline>

 <Pipeline

 name="DummyManifestReceiver"

 root="Collection/dummy/manifest">

 <HttpImportService

 6

 class="org.rsna.ctp.stdstages.HttpImportService"

 logConnections="no"

 name="HttpImportService"

 port="7778"

 quarantine="quarantines/HttpImportService"

 root="roots/HttpImportService"/>

 </Pipeline>

</Configuration>

The configuration has three main pipelines:

1. CollectionImport receives and stores DICOM files.
2. CollectionAnonymization anonymizes and stores files.
3. CollectionExport transmits files to the principal investigator.

The configuration has two additional pipelines just for testing:

1. DummyExportReceiver receives DICOM files from the CollectionExport pipeline.
2. DummyManifestReceiver receives manifest submissions.

The configuration has three Plugins:

 The TCIAPlugin provides the interface into the pipelines for the wizard.

 The ImportManifestLogPlugin accumulates manifest information for imported files and
provides the information for the Lookup Table Template file.

 The ExportManifestLogPlugin accumulates manifest information for anonymized
submissions to the principal investigator.

3 User Accounts
When CTP starts, the TCIAPlugin changes the password of the admin user to tcia and grants it
these roles:

 The admin role grants access to the administrative roles on the server.

 The TCIA role grants access to the TCIAServlet.

 The qadmin role grants access to the QuarantineServlet.

 The shutdown role allows the wizard to shut down CTP.

 Additional users can be created through the User Manager on the CTP home page by logging in
as a user with the admin role.

The wizard can automatically log in the user is as admin/tcia, or it can provide a UI that gets the
username and password from the user and then make the call to the LoginServlet. The URL of
the LoginServlet is:

/login/ajax?username=...&password=...
The login returns either a 200 or a 403 response code.

To provide a logout feature, the wizard can use this URL:

 7

/login/ajax?logout
This call always returns 200.

4 The TCIAServlet API
This section describes the functions provided to the wizard by the TCIAServlet. All functions are
accessed by making an HTTP connection to the CTP server. Unless otherwise indicated, all
functions return an HTTP response with Content-Type: text/xml;charset=UTF-8.

4.1 Submitting Files to the Import Pipeline

4.1.1 Listing Files on the Server
To list the files in a directory on the server, the wizard does an HTTP GET to:
 /Collection/listFiles?dir=path
The servlet returns an XML structure like this:

<dir
 name="...directory name..."
 parent="...absolute path to the parent directory..."

 skippedFileCount="0">
 <dir name="...child directory 1 name..."/>
 <dir name="...child directory 2 name..."/>
 ...
 <dir name="...child directory n name..."/>
 <file name="...child file 1 name..."/>
 <file name="...child file 2 name..."/>
 ...
 <file name="...child file n name..."/>
</dir>

If the dcm query parameter is supplied, <file> elements are only returned for files that parse
as DICOM files. If the dcm query parameter is missing, <file> elements are returned for all
files.

The acceptedFileCount attribute indicates the number of files that met the acceptance
criterion.

If the dcm query parameter is supplied, the skippedFileCount attribute indicates the number of
files in the directory that were not DICOM files.

4.1.2 Checking the Space Required for Import
To submit a list of files to the DirectoryImportService in the import pipeline, the wizard does an
HTTP GET to:

/Collection/getSpaceRequired?file="path sequence"
where path sequence is a string of paths separated by pipe characters, like this:

absolutePath-1|absolutePath-2|...|absolutePath-n

The servlet computes the sum of the sizes of all the files. An absolutePath that points to a file
includes the size of that file. An absolutePath that points to a directory includes the sizes of all
the files in the directory and all of its child directories recursively.

 8

This servlet returns an XML structure like this:

<space partition="D:\" files="533"

required="163" available="433385" total="488383"

units="MB"/>

4.1.3 Submitting Files to the DirectoryImportService
To submit a list of files to the DirectoryImportService in the import pipeline, the wizard does an
HTTP GET to:

/Collection/submitFile?file="path sequence"
where path sequence is a string of paths separated by pipe characters, like this:

absolutePath-1|absolutePath-2|...|absolutePath-n

The servlet copies DICOM files to the import pipeline. An absolutePath that points to a file
imports that file. An absolutePath that points to a directory imports all the files in the directory
and all of its child directories recursively.

The servlet returns an XML structure indicating whether the submissions all succeeded (<OK/>)
or at least one failed (<NOTOK/>). In both cases, two attributes are included in the response:

 acceptedFileCount indicates how many DICOM were submitted.

 skippedFileCount indicates how many non-DICOM were ignored.

4.1.4 Submitting Files to the DicomImportService
The DicomImportService receives DICOM transfers on port 104. No configuration of the AE
Titles is necessary; the SCP accepts all AE Titles.

4.2 Viewing the Status of the Import Pipeline
To obtain the number of files that have been received but not yet processed by the import
pipeline, the wizard does an HTTP GET to the URL:

/Collection/getImportStatus
The AJAX call returns an XML structure like this:

<status queueSize="0"/>

The queueSize attribute is the sum of the queue sizes of all the import services in the import
pipeline. When the queueSize attribute is zero, all the received files have been passed down the
pipeline and are ready for anonymization.

4.3 The Import Manifest
As files are imported, a manifest listing key identifiers from each file is created. The manifest
can be obtained as XML, CSV, or XLSX. The manifest contains one entry for each series. The
TCIAServlet provides three functions for accessing the manifest.

4.3.1 Listing the Import Manifest as XML
The wizard can obtain an XML structure containing the manifest of series, including PHI, by an
HTTP GET to:
 /Collection/listImportManifest/xml
The resulting structure looks like this:

 9

4.3.2 Listing the Import Manifest as CSV
The wizard can obtain a text string containing the import manifest as a spreadsheet in CSV
format by an HTTP GET to:
 /Collection/listImportManifest/csv
The response returns a CSV text string with Content-Type: text/csv;charset=UTF-8. The
resulting spreadsheet has one row for each series, as shown in the next section.

4.3.3 Listing the Import Manifest as XLSX
The wizard can obtain a text string containing the import manifest as a spreadsheet in XLSX
format by an HTTP GET to:
 /Collection/listImportManifest/xlsx
The response returns a CSV text string with Content-Type: application/vnd.openxmlformats-
officedocument.spreadsheetml.sheet. The resulting spreadsheet has one row for each series:

4.4 Updating the DicomAnonymizer Lookup Table

4.4.1 Listing the Lookup Table Template Spreadsheet
To get the spreadsheet containing the PatientIDs of all the imported files, the wizard does an
HTTP GET to the URL:

/Collection/listLookupTableTemplate
The template spreadsheet looks like this:

 10

To get the spreadsheet containing the PatientIDs of selected patients, the wizard does an HTTP
GET to the URL:

/Collection/listLookupTableTemplate?id=PatientID1|PatientID2|...|PatientIDn

4.4.2 Submitting the Lookup Table
To update the anonymizer lookup table from an Excel spreadsheet, the wizard does an HTTP
POST of the file (with Content-Type multipart/form-data) to the URL:
 /Collection
The spreadsheet must be an XLSX file with this structure:

The first row contains the KeyTypes used in the lookup table for the data in each spreadsheet
column. This row must not be modified.

The second row provides a human-readable label for the column. The TCIA servlet needs the
first row. It ignores the second row and starts processing rows at the third row.

4.5 Viewing the List of Files Ready for Anonymization
To obtain the list of files that have been received but not yet anonymized, the wizard does an
HTTP GET to the URL:

/Collection/listImport
The response returns an XML structure like this:

 11

The XML structure mimics the directory structure in which the files are stored. Each dir element
in the XML structure represents a directory. The top-level directory is the root directory of the
DirectoryStorageService pipeline stage that contains the files received by the import pipeline.
Under the top-level directory, there is one directory for each patient. Under a patient's
directory is one directory for each date on which the patient had a study. The study date
directory contains all the images for studies done on that date. Individual image files are
represented in the XML structure by DicomObject elements.

The relative path to a directory can be obtained by walking the tree from the point in question
back to the top. Thus, the relative path to the 20010312 directory is:

DirectoryStorageService/1200824338-Bunny,Bugs/20010312
The base of the relative path is the root of the pipeline stage.

4.6 Initializing the Anonymization Pipeline Counts
Before files are submitted to the anonymizer pipeline, the pipeline must be initialized by an
HTTP GET to the URL:

/Collection/initializeAnonymizerPipelineCounts
The servlet returns an XML structure like this:

 12

4.7 Submitting Files for Anonymization
To anonymize studies that were listed in 4.2, above, the wizard passes some level in the
hierarchy (a patient, a single study, or the top-level directory) to the servlet in an HTTP GET to
the URL:

/Collection/anonymize?file=filepath
where filepath is the relative path. If the filepath is a directory, the servlet processes all the files
in that directory and all its child directories. For example, to process everything that has been
received, the URL would be:
 /Collection/anonymize?file=DirectoryStorageService

The servlet moves the files from the import pipeline to the anonymizer pipeline to start the
anonymization. The servlet returns an XML structure with one element <OK/> or <NOTOK/> to
indicate whether all the moves were successful.

4.8 Pausing the Anonymization Pipeline
To pause the anonymization pipeline, the wizard does an HTTP GET to the URL:

/Collection/pause
The servlet returns an XML structure with one element <OK/>. While the pipeline is paused, no
files flow down the pipe, but files are accepted into the import service of the pipe, and any files
that were being exported from the pipe continue to be exported.

4.9 Restarting a Paused Anonymization Pipeline
To restart the anonymization pipeline if it has been paused, the wizard does an HTTP GET to the
URL:

/Collection/restart
The servlet only restarts the pipeline if it had previously been paused; otherwise, it does
nothing. The servlet returns an XML structure with one element <OK/> if the pipeline was
actually restarted; otherwise, it returns <NOTOK/>.

If the path element /requeue is added, the contents of the anonymizer quarantine are
requeued in the import service of the anonymizer pipeline before the restart:

/Collection/restart/requeue

4.10 Viewing the List of Files Ready for Export
To obtain the list of files that have been anonymized but not yet exported, the wizard does an
HTTP GET to the URL:

/Collection/listAnonymized
The response returns an XML structure like this:

 13

The XML structure exactly mimics the one that listed the imported files, but it references a
different DirectoryStorageService pipeline stage, so although the directory names are the same,
they are relative to a different root directory.

 [This is probably also a good place to provide file viewing capabilities to reassure the user that
they are not exporting PHI.]

4.11 Exporting Files
To export studies that were listed in 4.4, above, the wizard passes some level in the hierarchy (a
patient, a single study, or the top-level directory) to the servlet in an HTTP GET to the URL:

/Collection/export?file=filepath
where filepath is again the relative path.

The servlet moves the files from the anonymizer pipeline to the export pipeline to start the
export. The servlet returns an XML structure with one element <OK/> or <NOTOK/> to indicate
whether all the moves were successful.

4.12 Getting the Export Status
The wizard can determine whether all the files that have been queued for export have actually
been transmitted to the destination by an HTTP GET to the URL:

/Collection/exportStatus
The servlet returns an XML structure with one element <ACTIVE/> or <INACTIVE/> to indicate
whether all the files have been transmitted.

 14

4.13 The Export Manifest Database
As files are anonymized, a manifest database listing key identifiers from each file is created. The
manifest database can be viewed as XML, CSV, or XSLX, with or without PHI. The manifest with
PHI is called the Local Manifest; the manifest without PHI is called the Export Manifest, since it
is the version that is exported to the principal investigator. The manifest contains one entry for
each series. The TCIAServlet provides eight functions for accessing the manifest:

4.13.1 Clearing the Export Manifest Database
The wizard can clear the manifest by an HTTP GET to the URL:
 /Collection/clearExportManifest
The servlet returns an XML structure with one element <OK/> or <NOTOK/> to indicate
whether all the operation was successful. After calling this function, the manifest database is
empty, and the initializeAnonymizerPipeline should be called if more files are to be processed.

4.13.2 Getting the Export Manifest Database Status
The wizard can get an XML structure containing the status of the processing of files in the
Anonymizer pipeline by an HTTP GET to the URL:
 /Collection/getExportManifestStatus
The servlet returns an XML structure like this:

4.13.3 The Local Manifest

4.13.3.1 Listing the Manifest with PHI as XML
The wizard can obtain an XML structure containing the manifest of series, including PHI, by an
HTTP GET to:
 /Collection/listLocalManifest/xml
The resulting structure looks like this:

 15

4.13.3.2 Listing the Manifest with PHI as CSV
The wizard can obtain a text string containing the manifest as a spreadsheet in CSV format by
an HTTP GET to:
 /Collection/listLocalManifest/csv
The response returns a CSV text string with Content-Type: text/csv;charset=UTF-8. The
resulting spreadsheet has one row for each series.

4.13.3.3 Listing the Manifest with PHI as XLSX
The wizard can obtain a file containing the manifest as a spreadsheet in XLSX format by an HTTP
GET to:
 /Collection/listLocalManifest/xlsx
The response returns an XLSX file with Content-Type: application/vnd.openxmlformats-
officedocument.spreadsheetml.sheet. The resulting spreadsheet has one row for each series.

4.13.4 The Export Manifest

4.13.4.1 Listing the Manifest without PHI as XML
The wizard can obtain an XML structure containing the manifest of series, including PHI, by an
HTTP GET to:
 /Collection/listExportManifest/xml
The resulting structure looks like this note that the phi attributes of the elements are not
present):

4.13.4.2 Listing the Manifest without PHI as CSV
The wizard can obtain a text string containing the manifest as a spreadsheet in CSV format by
an HTTP GET to:
 /Collection/listExportManifest/csv

 16

The response returns a CSV text string with Content-Type: text/csv;charset=UTF-8. The
resulting spreadsheet contains one row for each series, with only the anonymized values.

4.13.4.3 Listing the Manifest without PHI as XLSX
The wizard can obtain a file containing the manifest as a spreadsheet in XLSX format by an HTTP
GET to:
 /Collection/listExportManifest/xlsx
The response returns a CSV text response with Content-Type:
application/vnd.openxmlformats-officedocument.spreadsheetml.sheet. The resulting
spreadsheet contains one row for each series, with only the anonymized values.

4.13.5 Exporting the Manifest
The wizard can sent the CSV manifest without PHI to the principal investigator by an HTTP GET
to:
 /Collection/exportManifest
The servlet returns an XML structure with one element <OK/> or <NOTOK/> to indicate
whether the transmission was successful.

4.14 The History Database
The system maintains a persistent history of all DICOM instances that have been exported.

4.14.1 Resetting the History Database
The wizard can erase the entire history database by an HTTP GET to the URL:
 /Collection/resetHistory
The servlet returns an XML structure with one element <OK/>.

4.14.2 Listing the History without PHI
The wizard can obtain a file containing the history database as a spreadsheet in XLSX format by
an HTTP GET to:
 /Collection/listHistory
The response returns an XLSX file with Content-Type: application/vnd.openxmlformats-
officedocument.spreadsheetml.sheet. The resulting spreadsheet has one row for each series,
and it contains only anonymized values.

4.14.3 Listing the History with PHI
The wizard can obtain a file containing the history database as a spreadsheet in XLSX format by
an HTTP GET to:
 /Collection/listHistory/phi
The response returns an XLSX file with Content-Type: application/vnd.openxmlformats-
officedocument.spreadsheetml.sheet. The resulting spreadsheet has one row for each series,
and it contains both PHI and anonymized values.

4.14.4 Exporting the History
The wizard can send the history manifest without PHI to the principal investigator by an HTTP
GET to:
 /Collection/exportHistory

 17

The servlet returns an XML structure with one element <OK/> or <NOTOK/> to indicate
whether the transmission was successful.

4.15 Image Functions

4.15.1 Listing the Elements of a DICOM File
The wizard can obtain an HTML page containing a table showing the values of the elements in a
DICOM file by an HTTP GET to the URL:
 /Collection/listElements?file=filepath
The servlet returns a JPEG image in the response with Content-Type: image/jpeg. If the servlet
cannot find the file, the servlet returns a 404 response code. If the servlet cannot parse the file,
the servlet returns a 500 response code and enters a stack trace in the log.

4.15.2 Getting a JPEG Image from a DICOM File
The wizard can obtain a browser-viewable image of a DICOM by an HTTP GET to the URL:
 /Collection/getImage?file=filepath
The servlet returns a JPEG image in the response with Content-Type: image/jpeg. If the servlet
cannot find the file, the servlet returns a 404 response code. If the servlet cannot parse the file,
the servlet returns a 500 response code and enters a stack trace in the log. If a 500 is received
and the log shows a No class def found error for the StreamSegmentMapper, it means that
either the ImageIO Tools have not been installed, or the image has a format is not supported by
the ImageIO Tools.

4.16 Special Functions

4.16.1 Getting the List of File System Roots on the Server
The wizard can obtain an XML structure listing the file system roots on the server by an HTTP
GET to the URL:
 /Collection/getFileSystemRoots
This servlet returns an XML structure like this:

4.16.2 Getting the Available Space on the Server
The wizard can obtain an XML structure indicating the available space on the partition on which
the CTP instance is located by an HTTP GET to the URL:
 /Collection/getAvailableSpace
This servlet returns an XML structure like this:

<space partition="D:\" available="434932" units="MB"/>

The wizard can specify the file system root on which to obtain the available space by including
the root query parameter:
 /Collection/getAvailableSpace?root=...

 18

Where the value of the root parameter is a name obtained from the getFileSystemRoots
function.

4.16.3 Getting the Export Queue Size
The wizard can obtain an XML structure indicating the current size of the export queue by an
HTTP GET to the URL:
 /Collection/getExportQueueSize
This servlet returns an XML structure like this:

<queue stage="HttpExportService" size="10"/>

4.16.4 Getting the URL of the Quarantine Manager Servlet
The wizard can obtain an XML structure containing the URL of the CTP Quarantine Manager for
the DicomAnonymizer quarantine by an HTTP GET to the URL:
 /Collection/getQuarantineURL
This servlet returns an XML structure like this:

<quarantine stage="DicomAnonymizer" url="/quarantines?p=1&s=2"/>

4.16.5 Getting a Summary of the DicomAnonymizer Quarantine
The wizard can obtain an XML structure containing a summary of the objects in the
DicomAnonymizer quarantine by an HTTP GET to the URL:
 /Collection/getQuarantineSummary
This call returns an XML structure like this:

… TBD …

4.16.6 Shutting Down the Server
The wizard can shut down the CTP server by an HTTP GET to:
 /shutdown
The system returns either a 200 or 403 response code. It fails if the user does not have the
shutdown role. This URL accesses the CTP ShutdownServlet directly. It returns a web page like
this:

4.17 Testing Functions
During testing, it may be convenient to clear all the import/export directories, the
DicomAnonymizer quarantine, and the manifests. This can be done by an HTTP GET to the URL:
 /Collection/reset
The servlet does all it can and returns an XML structure with one element <OK/>. It never
returns <NOTOK/>.

